Geometric and process design of ultra-thin junctionless double gate vertical MOSFETs
نویسندگان
چکیده
منابع مشابه
Ultimately Thin Double-Gate SOI MOSFETs
The operation of 1–3 nm thick SOI MOSFETs, in double-gate (DG) mode and single-gate (SG) mode (for either front or back channel), is systematically analyzed. Strong interface coupling and threshold voltage variation, large influence of substrate depletion underneath the buried oxide, absence of drain current transients, degradation in electron mobility are typical effects in these ultra-thin MO...
متن کاملDesign and Analysis of Double-Gate MOSFETs for Ultra-Low Power Radio Frequency Identification (RFID): Device and Circuit Co-Design
Recently, double-gate MOSFETs (DGMOSFETs) have been shown to be more optimal for ultra-low power circuit design due to the improved subthreshold slope and the reduced leakage current compared to bulk CMOS. However, DGMOSFETs for subthreshold circuit design have not been much explored in comparison to those for strong inversion-based design. In this paper, various configurations of DGMOSFETs, su...
متن کاملEffect of Heavy Ion irradiation and Electrical Stress on Ultra-Thin Gate Oxide SOI MOSFETs
An accelerated wear-out of ultra-thin gate oxides used in contemporary deep-submicron CMOS technologies is one of the effects observed in MOSFETs submitted to irradiation with high LET particles [1-5]. The damage introduced in the gate oxide by an impinging ion may in fact act as a seed for further degradation produced by electrons and holes injected at high fields during a subsequent electrica...
متن کاملNumerical Simulation of Nanoscale Double-gate Mosfets
ABSTRACT The further improvement of nanoscale electron devices requires support by numerical simulations within the design process. After a briefly description of our 2D/3D-device simulator SIMBA, the results of the simulation of DG-MOSFETs are represented. Starting from a basic structure with a gate length of 30 nm, a calibration of model parameters was done based on measured values from liter...
متن کاملValley-engineered ultra-thin silicon for high-performance junctionless transistors
Extremely thin silicon show good mechanical flexibility because of their 2-D like structure and enhanced performance by the quantum confinement effect. In this paper, we demonstrate a junctionless FET which reveals a room temperature quantum confinement effect (RTQCE) achieved by a valley-engineering of the silicon. The strain-induced band splitting and a quantum confinement effect induced from...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Electrical and Computer Engineering (IJECE)
سال: 2019
ISSN: 2088-8708,2088-8708
DOI: 10.11591/ijece.v9i4.pp2863-2873